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Abstract. A new approach to handle the Dirac equation in orthogonal curvilinear coordin- 
ate systems is presented. It is applicable at least for all coordinate systems which can be 
described by conformal mappings in a specified manner. The method is based on a 
space-dependent transformation of the wavefunction corresponding to a space-dependent 
set of Dirac matrices, a local representation. This transformation, which can be given in 
closed form, is chosen in such a way that the Dirac equation in the given coordinates 
assumes a very simple form, well suited for numerical and analytical examinations. The 
relationship between the different forms of the Dirac equation is then discussed. The 
special case of spherical coordinates is investigated in detail. 

1. Introduction 

Electrons and other spin-$ particles are described relativistically by the Dirac equation 
(Dirac 1928), a partial differential equation in the four space-time coordinates. In 
the absence of an electromagnetic potential, solutions like plane waves or spherical 
Bessel functions are known. Moreover, these solutions can be chosen to be eigenfunc- 
tions of any operator commuting with the Hamiltonian, such as momentum, angular 
momentum or parity. But there are only very few cases where stationary eigenfurictions 
and eigenvalues are known explicitly, if the electron interacts with an external potential. 
The best known example is the pure Coulomb potential. Frequently the potential 
possesses some geometrical symmetries, for instance invariance under arbitrary rota- 
tions around a fixed point, which in some cases can be used to reduce the Dirac 
equation to a system of ordinary differential equations. However, this is impossible 
even for such interesting potentials as those generated by two fixed point-like nuclei. 
Here the best one can do is to separate one coordinate in the stationary problem, 
for example the azimuthal angle cp. Then one is left with a partial differential equation 
in two coordinates, which has to be solved numerically. 

The optimal set of coordinates to be chosen depends strongly on the potential 
examined. They should ‘fit’ it. Firstly the potential should take a simple form in the 
particular coordinates used; especially the singularities and symmetries should match. 
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forschung (GSI) and by US DOE Contract No DE-AC-0276ER03074. 
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A second point in choosing new coordinates, which, of course, have to be mathemati- 
cally still manageable, is a suitable asymptotic behaviour; then sometimes simple 
asymptotic expressions for the wavefunctions near the boundaries can be found. To 
formulate the problem in non-Cartesian coordinates we can use the general relativistic 
formulation of the Dirac equation in a Minkowski space (Fock 1929, Schmutzer 1968), 
using the covariant derivative with space-dependent spinor-connections. For example, 
the spherical Dirac equation, in the presence of an external potential V, reads 

We use the convention h = c = 1 throughout. Another way is the direct transformation 
of the coordinates, starting with the Cartesian Dirac equation, where the spinor 
connections vanish. This generates space-dependent matrices, T", in front of the 
derivatives. Here the Dirac equation becomes (Rose 1961) 

with the matrices 

~ '=cose(coscpy '+s incpy2)-s iney3 ,  

y =-sincp y +coscpy , 

~ 3 = s i n ~ ( c o s c p y 1 + s i n c p y 2 ) + ~ ~ ~ ~ y 3 .  

- 2  1 2 (1.3) 

In both cases we arrive at a rather complicated partial differential equation. Clearly, 
the two wavefunctions, (j/r and are not identical. The connection between them 
is not trivial. 

Subsequently we will show that there exists a third possibility combining the 
advantages of the previously mentioned ones. This leads to 

Moreover, we can give immediately the connecting transformation between the three 
wavefunctions, 

cclC = ~ ( j / ~  = eBSg, (1.5) 
with a certain space-dependent unitary matrix S and a scalar-valued function B, which 
can be given in closed form. The method can be applied at least for all coordinate 
systems which can be obtained from the Cartesian system in one or more steps by 
conformal mappings. This means that it is practicable for all coordinate systems 
normally encountered in applications, in particular for the 37 systems described by 
Moon and Spencer (1961). Such a unitary transformation corresponds to a new 
representation of the Dirac matrices. Because of the space dependence of S we will 
call it a local representation (Good 1955). We will show that the added flexibility of 
a space-dependent representation may lead to significant simplifications. Not only 
the Hamiltonian, but also other operators of physical interest appear in an astonishingly 
simple form. For example, the z component of the total angular momentum operator 
just becomes 

J,  = -i a/acp. (1.6) 
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The expressions for orbital or spin angular momentum alone are much more compli- 
cated. 

Because of this simplicity it can be expected that the numerical treatment of the 
Dirac equation as a partial differential equation needs far less expense, if we use the 
local representation. Furthermore, it will be much easier to find analytical expressions 
for eigenfunctions of an operator, if this operator has a simple structure. A trivial 
example is given b y j z  where every bispinor of the form $ ( r ,  6 )  eiwe yields an eigenfunc- 
tion with eigenvalue p.  Finally, we think that these advantages are a motivation per 
se to study the Dirac equation in the local representation. 

This paper is organised as follows. In § 2 we will fix the notation, develop the 
idea on which the method is based and find some of its properties. In Q 3 the Dirac 
equation in local representation is derived for cylindrical coordinates. Next we will 
show how to calculate the transformation matrix in less trivial cases. It is proven that 
the method is applicable for all coordinate systems which can be obtained from 
conformal mappings in a certain sense. Finally we will study in 8 5 the special case 
of spherical coordinates in detail. The application to the two-centre Dirac equation 
is postponed to the following paper. 

2. The local representation 

The Dirac equation in Cartesian coordinates x,” = (t ,  x, y, z )  reads, in the presence of 
an electromagnetic potential A,”, 

[yw - eA‘,) - m]Gc = 0 (2.1) 
with the derivative 

Greek indices run from 0 to 3, Latin indices through 1,2,3. The summation convention 
is used for Greek indices only. Here {y”} denotes a set of four constant 4 x 4 matrices, 
which obey the well known anticommutator relations 

{y”, y”} = 2gw” = 2 diag(+l, -1, -1, -1) 

as well as the hermiticity condition 
y + -  = yoy”yo ,  

i, = *:Yo* 

Therefore the adjoint spinor is 

For further reference we introduce the following abbreviations for some products of 
y-matrices : 

f f k  = ck =$ 1 &klmY‘ym, 
lm 

(2.6) 
p w  = iy5yw’. 

Together with the 4 x 4 unit matrix and the four y-matrices they form a set of 16 
linearly independent matrices. All products, commutators or anticommutators of 
these matrices can be obtained directly from (2.3); this means that the result can be 
expressed as a linear combination of our basic matrices. We mention that most 

0 1 2 3  
Y 5 = i Y  Y Y Y 7 
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calculations can be done without reference to a specific representation of the y -  
matrices. 

Different representations are closely interrelated. This is the proposition of: 

Pauli‘s fundamental theorem (Pauli 1936). Two sets { y ” }  and {y”} of Dirac matrices, 
each fulfilling the anticommutator relations (2.3), are connected by a similarity trans- 
formation, unique up to a factor. If, besides this, both sets obey (2.4), the transforma- 
tion matrix can be chosen unitary. More definitely: from 

{Y” ,  Y ”1 = w, 7”) = 2g””, 
Y ” +  = y o y ” y o ,  y + =  - 0-”-0 

Y Y Y ,  
(2.7) 

it follows that there exists a unitary matrix S, such that 

p” = Sy’S-’, (2.8) 
and this matrix is unique up to a phase. 

Now we want to introduce into the Dirac equation new orthogonal space coordin- 
ates x”  = (xo, x’, x2, x3). We demand that {xi} depends on {xl} only, i.e. it has 
to be independent of xz = xo = t .  Moreover, we assume for simplicity that the three 
orthogonal unit vectors (e:  denote the Cartesian unit vectors) 

form a right-handed system. Here we have denoted the scale factors as 
1/2  

hi = ( 1  (axi/ax‘)2) ; (2.10) 

then the three-dimensional volume element changes according to 

d7 =dx,‘ dxf. dxf = hlh2h3 dx’ dx2 dx3. (2.11) 

The components Vi of any three-vector 

v = e ; v f  = e i V i  
i i 

in the new system are 

The components of the derivative become simply 

Bj = (hi)-’ a/axJ. 

Thus the Dirac equation reads (Ao =A:,  8, = d:) 
[?”(&, - e A , )  - m ] 4 =  = 0 .  

Here the matrices 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

appear, which in general will depend on the xi, for the basis vectors e, will do so. 
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However, since the ei are orthogonal, the 7's obey the same anticommutator relations 
and hermiticity conditions, namely 

{y,, T"} = 2g*", y+ = &'L70, (2.17) 

with the old, Cartesian g,". 
Therefore we know from Pauli's fundamental theorem that there exists a unitary 

matrix S, generally space-dependent, which transforms them back into the old y's, cf 
(2.8). 

Now it seems obvious to make the following ansatz: 

I L ~  = eBW, (2.18) 

where eB denotes a non-zero complex factor, independent of t, which is up to now 
completely arbitrary. Inserting this into the Dirac equation, we get, after multiplication 
from the left with e-BS-', 

[y " (id, - eA, + ir, ) - m34 = 0 (2.19) 

with an additional term 

r, = e-BS-l(B,eBS) = B,B + s - ' ~ , s .  (2.20) 

Thus we have the old y-matrices in the Dirac equation, now multiplied with the 
components B, and A, in the new coordinate system. After the discussion of an 
example in the next paragraph we will show that in many important cases a B can 
be found such that the term y"r,  vanishes. If we choose B = 0, we get an equation 
similar to (l , l) ,  the Dirac equation formulated according to general relativity. So S 
is the unitary matrix transforming $c into 4,, cf (1.5), and S-'a,S have to be the 
spinor connections. We will come back to this point in 0 4 .  Clearly the behaviour 
under gauge transformations is not affected. An ansatz like (2.18) implies a transition 
to a new representation of y-matrices. Here S depends generally on the coordinates 
x i ,  thus we have a space-dependent or 'local' representation. It has the advantage, 
at least for yWT, = 0, that the Dirac equation takes a much simpler form. 

An observable 6, of the original, Cartesian representation is transformed according 
to 

(2.21) 

We mention that the derivative Bi, defined in (2.2) and (2.14), has to be distinguished 
from the momentum operator Ci. As an example we consider the Hamiltonian 
assuming yFrfi = 0. 

dC+ 8 = e-BS-'dc eBS. 

f i C  = c ( Y k ( - i d i  + eAi) +eAT, + y0m + fi = c Y k ( - i d k  +f?Ak) +eAo + y'm. (2.22) 
k k 

What will happen to bilinear expressions, especially to the current density 

ic" = &Y "IL,, (2.23) 

if it expressed in terms of 4? Firstly, there occurs for all CL a factor besides 
this factor io will remain unchanged. It will be suitable to look for the components 
of j in the new coordinate system, because they will take a simple form too: 

, ji = i c y  eAc = &'+ e'Re(B). (2.24) 2 Re(B) io = JY OIL e 
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The normalisation condition now becomes 

2 R e ( B )  + drrl,,frl,,= d r e  rl, r l ,= l ,  I I (2.25) 

where d r  is given in (2.1 1) 

3. The Dirac equation in cylindrical coordinates 

As a first illustrative example we will examine the Dirac equation in cylindrical 
coordinates: 

x = p  cos cp, y = p sin cp, z = z .  (3.1) 
Inserting this transformation into the Dirac equation (2.1) we get 

[ y o  (i t - e A o )  +(cos cp y1 +sin cp 7') (: i --eA, ) 
+(-sin cp y 1  +cos q y 2 )  i - - -eA,  )+y3(i:-eAz)-m]g,=O (3.2) ( P a Q  

corresponding to (2.15). Here A,=A -ep and A,  = A  'e, are the components of 
the vector potential in cylindrical coordinates. Thus we have the space-dependent 
matrices 

7 '=coscpy 1 +sincpy 2 , 7 2 =-sincpy 1 +coscpy 2 , 70 = y o ,  

A matrix S, transforming them back into the y w ,  is easily found: 
1 s = exp(- 5i(pz3) = cos ( tq)  - i sin (icp) x3. 

X3 is just the generator for rotations around the z axis. Hence the ansatz 

= eB exp(- &cp x 3 ) ~  
will lead to (2.19) in cylindrical coordinates with the additional term 

y w T w  = y  l a  (-B +exp(&X3)-eexp(-&cpT3)) a 
aP aP 

where we assumed that B depends on p and cp only. Equation (3.6) becomes 

rwr, = yl(aB/ap + 1/2p)+y2@-'  aB/acp). (3.7) 
This term will vanish if we choose 

eB = 1/JP. (3.8) B = -L 
2 log P ,  

In this case the Dirac equation simply reads 

[ y o  ( i  - eA 0 )  + y (i - eA,) + y ( i  - eAq) + y 3  (i & - eA,) - m ]  rl, = 0. 
JP P acp 

(3.9) 
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This new wavefunction has to be normalised according to 

J dz dp dq d+$ = 1. (3.10) 

We observe that the density function p is just cancelled by the factor e2'. Clearly, 
the Hamiltonian is now 

A = a l ( - i - + e A ,  a + e A o + y  0 m. (3.11) 
aP 

If the electromagnetic potential is independent of the azimuthal angle cp, the operator 
-i d l a q  commutes with 6. 

Because of (2.21 j the z component of the angular momentum operator becomes 

(3.12) 

Normally one would expect that -i a / a q  has the eigenvalues 0, *l, . . . , while for the 
electron as a spin-; particle the eigenvalues of J ,  should be *$, *;, . . . . The explana- 
tion is as follows. The coordinate space (p, cp, z )  is not unique; any interval (pL < p < 
(pL+2i7, cpLe[W is possible. The original wavefunction t,bc has to be continuous 
everywhere, i.e. 

(3.13) 

Once an interval, i.e. a value of qL, is chosen, the matrix S of (3.4) is well defined. 
However, different intervals will lead to different unitary matrices. Paying attention 
to 

(3.14) 

despite the fact that cpL and p L +  2i7 denote the same point, it becomes clear that we 
have to require 

(3.15) 

With these boundary conditions j ,  = -i(a/acp) is a hermitian operator, having the 
eigenvalues 

(3.16) 

*JCP = CPLj = *c(cp = CPL + 2i7). 

S((FL) = - s ( ( F L +  2 7  ), 

d(CP = (FL) = -*(q = qr+27T). 

1 3  p = *t, iz,. . . . 

The eigenfunctions are 

. f ,$(p,  z elrrv = p*b, z )  e''*, (3.17) 

and each component of the spinor wavefunction possesses the same factor e"'". 

4. Derivation of the transformation matrix 

In the general case it will be rather difficult to find a unitary matrix S and a function 
B such that the Dirac equation takes the simple form 

[y' (&' - e A ,  j - m ] d  = 0, (4.1) 
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or, written in detail, 

y ’A ’) - m] 4 = 0. (4.2) 

Here the A’ denote the components of A in the coordinate system { x i } ,  cf (2.13), 
expressed by the new variables. Therefore, we want to restrict the coordinate transfor- 
mations to a certain class. This class consists of transformations which can be written 
as a product of transformations in two coordinates. The single transformations have 
to be induced by conformal mappings; the precise meaning of this will be discussed 
below. Sometimes it is useful to insert a transformation in one variable, leaving S 
and B unchanged; only a scale factor will be modified. Such a modification serves as 
a preparation of the coordinate couple for further conformal mappings, cf (4.5) below. 

The most important property of conformal mappings is their preservation of angles 
and orientation (Behnke and Sommer 1976). They are described by holomorphic 
functions. In particular, this im.plies that the lines with Re  f([) = constant are 
orthogonal to those with constant imaginary part for any holomorphic function f([). 
So, combining x i  and xi to the complex variable 

[ = xi + ixi, (4.3) 

xl = R e f ( 0 ,  .I = Imf( l ) ,  (4.4) 

we get a new orthogonal coordinate system through 

which has the same orientation as the old one. However, we will say that the coordinate 
transformation is induced by the conformal mappingf only, if the scale factors coincide: 

(4.5) hi = hi = h. 

This relation is not destroyed by the coordinate transformation, for we have 

(4.6) 

with the inverted mapping [(f). The condition (4.5) simplifies the following calcula- 
tions greatly. It is not very stringent. If one starts with the Cartesian coordinates x 
and y or with the cylindrical coordinates p and I, it is fulfilled with h = 1.  All coordinate 
systems, practically used, can be obtained in this way; Moon and Spencer (1961) give 
a description of not less than 37 coordinate systems of such a kind. 

Subsequently we will show how to calculate the two unknowns S and B, if our 
stack of transformations is augmented by one step. 

Let us assume that we have after n transformations a coordinate system x i  with 
the scale factors hi and that the Dirac equation has the form of (4.1). The wavefunction 
4 depends on I j lc, the wavefunction in the original, Cartesian, representation, by 

= eBS4. (4.7) 

( x i , x j , x k ) - ) ( x ~ , x ~ , x ~  = x k ) ,  (4.8) 

Now we will consider the transformation, induced by a conformal mapping, 

leaving x k  invariant. Without loss of generality we require that the three numbers 
i, j ,  k are an even permutation of 1,2,  3, i.e. &ijk = +1. So, from now on i, j ,  k are 
fixed numbers. 
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Because of our condition that the three unit vectors el, as well as the e ; ,  form a 
right-handed system, the two vectors e: and e\  can be written as a linear combination 
of e,  and e, of the following type: 

e :  =cos a e ,  +sin a e,, e:  = -sin a e ,  +cos a e,. (4.9) 

Here cos a and sin a are calculated simply to be 

h' ax: h '  ax; 
h axi h axi cos a = - -, sina=--- .  

Because of (4.6) they can be combined into 

or 

1 d l  e'a - - - 
ldi/df I df * 

- 

Inserting this in the Dirac equation (4.1) we get 

(4.10) 

(4.11) 

(4.12) 

[ Y " ( i d ;  -eAL) - m ] 4  = 0 (4.13) 

with the new vector components A:  and the derivative 

fi; = ( A ; ) - '  a/ax". 

The new space-dependent Dirac matrices result as 

- 0  0 y k  = y k ,  Y = Y  5 

7' = cos a y '  +sin a y ' ,  7' = -sin a y '  +cos a y l ,  

(4.14) 

(4.15) 

fulfilling the ordinary anticommutation relations (2.7). The similarity transformation, 
which rotates them back into the old y @ ,  cf (2.8), is the unitary matrix 

S k ( f f ) = c o s ( ~ ( r ) - i s i n ( t a ! ~ k  = e x p ( - f i a ~ k ) ,  (4.16) 

(4.17) 

Thus we make the ansatz 

4 = e?& (a  )4' (4.18) 

with a hitherto unknown function @, depending like a on x, and x, only. The equation 
for rl/' becomes 

(4.19) [ y +  (d> -eAL + irl) - m14' = 0 

with 

r: = fi LB + sk (-a )6 Ls, ( f f  ) e  (4.20) 

Because of 

sk (-a ) (d/da )&(a)  = - iizk (4.21) 
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the additional term can be evaluated to be 

ywr;=[B;p + d ~ / 2 ] y 1  + [ 8 ; p  -8:a /2]yf .  (4.22) 

It vanishes if and only if the two terms vanish, that is, if the following two partial 
differential equations are fulfilled simultaneously: 

8 : p  +&/2 = 0,  D ; p  --d:a/2 = 0. (4.23) 

If there exists a solution, it can be chosen real, since a is real too. In this case (4.19) 
has the same form as the Dirac equation we started with, 

(4.24) [y” (i6: - eAL)  - m]4’ = 0, 

and the relation between 4’ and the Cartesian wavefunction JI, is given by 

4, = eB’s’4’ = eB+5 ssk (a  )G’Y (4.25) 

which is of the same form as (4.7). A solution of the system (4.23) is easily found. 
Substituting the definition (4.14) of 6;  the differential equations (4.23) become 

(4.26) 

This looks like the Cauchy-Riemann differential equations for a holomorphic function 

(4.27) 
g (f 1 with 

g(  f )  = p -ia/2. 

Such a function actually exists (cf (4,12)), 

g ( f )  = - h ( d l / d f  1, (4.28) 

so it is clear that 
1 /2  

e’=(;) . (4.29) 

Under such a transformation the volume element is changed according to 

d 7 = h 2 h k d x , d x I d x k + h r 2 h ~ d x :  dx: d ~ b = e - ~ * h ’ h ; d x :  dx: dx;. (4.30) 

Thus a part of the density function is cancelled by the factor e’’ in the normalisation 
integral. But also the transformations in only one coordinate, sometimes necessary 
to prepare two components of the coordinates for a further transformation by a 
conformal mapping, cf (4.51, have some influence on the volume element. Through 
the combination of these two effects it may be possible that the density function 
reduces to unity, as has been observed in the case of cylindrical coordinates. Later 
on we will see that the same happens in the case of spherical coordinates. 

This in fact, completes our discussion. In every step of our stack of transformations 
we can find a unitary matrix, sk((Y), and a function p, such that the additional term 
y ” r :  vanishes. Thus, in this case, a local representation can be found, in which the 
Dirac equation has the simple form (4.1). The total transformation operator eBS is 
just the product of matrices of the form ePSk(a) .  It connects the wavefunctions JI and 
JI, = eBSIL, cf (4.7). What is the meaning of the ‘intermediate’ expression eBJI = S-’JIc? 
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The answer is given in appendix 1, where we will show that this function is identical 
with the wavefunction obeying the covariantly formulated Dirac equation, which has 
been derived by Fock (1929) for any orthogonal coordinate system, i.e. 

(4.31) 

This proves the proposition stated in (1.5) and elucidates the meaning of S .  

5. Discussion of the Dirac equation in spherical coordinates 

In this section we will discuss-as an example-in detail the Dirac equation in spherical 
coordinates 

(5.1) x = r sin 8 cos cp, 

r E (O,=)) ,  e E (0 ,  7T).  (5.2) 

We start with the Dirac equation in cylindrical coordinates, as derived in 9 3. Defining 
the complex variable [ = z + ip, we get, using the complex logarithm, 

y = r sin 8 sin cp, z = r cos 8, 

with 

f([) = f ( z  + ip) = log([) = s +io = log r + id. (5.3) 

So we arrive at an intermediate coordinate system (s, e) .  To find a and p, which are 
identical with those for (r, e ) ,  we have to calculate the logarithm of the derivative, cf 
(4.27), (4.28), 

and therefore 
- 

e' = 1/dr. p = -1 2 log r, a = 8, 

Thus choosing 

the Dirac equation reads 

l a  
[ y o  ( i  a t  - eA 0) + y ( i  r a8 

a - eAo) + y z  ( i  - - - 
r sin 8 a q  

+ y '  1--eA, -m * = O .  
'(*:r ) 1 

The wavefunction has to be normalised according to 

dr d8 dq  (L'4 = 1. 

( 5 . 5 )  

(5.6) 

(5.7) 

(5 .8 )  

For the densities of the charge and the current in the new, spherical coordinates we 
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refer to (2.24L 

1 
jrp(r, 6 )  = -- 1,2 *+a 2 4  

r(sin 0 )  

Next we will derive expressions for some operators, namely angular momentum and 
parity, and study the structure of the eigenfunctions. The Hamiltonian is now 

A a ) +CY3 -3 + yOm + v, [31 ae sine acp 

a H=-i - a l - + a 2 - -  (5.10) 

if the vector part of A ,  vanishes. We also introduced the potential energy 

V = eAo. (5.11) 

As in the case of cylindrical coordinates, the z component of the angular momentum 
is 

J,  = -i d/acp. (5.12) 

The wavefunction has to obey the same boundary condition, namely (3.15). .f, will 
commute with G, if V is independent of cp. Again, the eigenfunctions of .f, are eirrq, 
corresponding to the eigenvalues CL = *+, *$, . . . , multiplied by any four-component 
spinor independent of cp. To clarify the eigensolutions there are other important 
operators, especially Dirac's 2 operator and the parity p .  In space-independent 
representation Dirac's operator is defined by 

R, = yO(Z  * i, + 1). (5.13) 

A 

Inserting the orbital angular momentum 

i,= -i(erp a/ae -e8(sin e)-l a/acp) (5.14) 

we get after some algebra according to (2.21) 

R = -iyo(Xz a/ae -(sin e)-' zl a/acp). (5.15) 

Here the matrices are just the Cartesian Z1 and &, instead of Z e, and Z - ee. The 
Hamiltonian is then simply 

A = -i[ag alar + (y3/r)R]+ y 0 m  + V. (5.16) 

The operators A and R will commute if the potential depends on r only. This operator 
l? could have been found just by looking at the differential equation. Clearly the 
parentheses in (5.10) contain the total angle dependence. So we have to find only a 
regular matrix to be multiplied with this term such that the product commutes with 
fi. This matrix turns out to be y 3 ,  but it is unique only up to a factor, determined in 
consistency with the standard notation. In appendix 2 it is shown that the eigenvalues 
are -K = *l ,  *2, . . . which are related to j ,  the angular momentum and the parity 
quantum number I by 

j = l K I - - i ,  I =i+lsgn(K)*  (5.17) 
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Actually the parity is 

T = ( - - I ) ~  =sgn(rc)(-l)k. 

In the original representation it is the eigenvalue of 

P,  = y O f s  

f s 4 ( r ) = G ( - r ) .  

with the space-inversion operator fs, 

In spherical coordinates fs operates on the angles: 

e j T - e  
cp E (cpr, cpL + T )  

cp E ( ( P L + T ,  cpL+2T) 
for 1,: c p + ( ~ + =  

cp -T 

r + r .  

201 1 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

Transforming this into the local representation, we have to observe the fact that f, 
acts also on eBS: 

P = = t i y o ~ l f s .  (5.22) 

Here the upper sign refers to cp E (cpL, cpLfr), the lower to cp E (cpL+r, cpL+2r), cf 
(5.21). 

To calculate the wavefunctions we have to choose a specific representation. We 
will not use the standard representation, 

(5.23) yP =a3O U, 
with the Pauli matrices (Tk, 

k 
y S  = i n  0 (Tkr 

f f l = ( l  0 1  O ) ?  u2=(9  ;), (T3=(l 0 -1  O )  ' (5.24) 

the 2 x 2  unit-matrix U and the direct product 0. We found the following set of 
matrices more convenient, 

7: = U 3 0  U, y w  = -iulO U .  
(5.25) 

The other Dirac matrices are defined by (2.6). The matrices (5.25) are related to the 
matrices y: by the similarity transformation 

1 2 3 
yw = iuz 0 ( ~ 2 ,  y w  = iuz 0 ul ,  

(5.26) 

(5.27) 

With these matrices the eigenvalue equation, as a partial differential equation in e 
and r (-i a/a(p replaced by ,U), is purely real and so the solutions without the factor 
eiw' can be chosen real too. To get the solutions of 
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we will not transform the solutions of the space-independent representation, but we 
will start directly with the differential equation, 

1 0  [iu2 a l a e  -a lp/(s in  e)]$ = -K& (5.29) 

Here we have replaced -i a/acp by its eigenvalue p.  So the upper two and lower two 
components fulfil the same differential equation. Thus they must coincide up to a 
factor that may depend on r, 

(5.30) 

We think that this factorising is a further aesthetic advantage of the local representa- 
tion. According to (5.29), the spinor function cp: has to obey 

(5.31) 

Making use of the anticommutator relations of the Pauli matrices, we see immediately 
that 

(5.32) 

(pvl  - ia2 sin e d/d@ - K sin f?)cpE(O) = 0. 

- r r  
a3Vc - V ’ K ,  iff2cp :: - cp 7, n ( P :  - q - K .  

Moreover, we have 

(e) - V r ( r  - 0).  (5.33) 

These are very simple relations between solutions with different quantum numbers. 
The factors which arise here depend on the phases chosen. However, it will be 
sufficient to solve the differential equation (5.31) for the special case K >O, p > O .  
This is done in appendix 2. The normalised solution is 

(5.34) 

with the abbreviation 

(5.35) 
The P?*”’s are Jacobi polynomials. A short list of them is given in appendix 2. These 
polynomials occur also in the theory of angular momentum describing matrix elements 
for finite rotations (Edmonds 1957). The normalisation constant is 

1 n = I K I  - I F /  - I  = j  -IF[. 

1 1 1 / 2  ( -1)6+”z [ ( K  - p  - T ) ! ( K  f p  - 5 ) ! ]  
( K  > O ,  p > O )  (5.36) 

( 2 4 ’ *  Z p ( K  - I ) !  
c1= 

to be consistent with the standard wavefunctions, cf (5.42) below. The solutions are 
normalised according to 

(5.37) 

Thus the phase factors are fixed for K > 0, p > 0. In the remaining cases we make 
use of (5.32) and define the wavefunctions by 

(5.38) 
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valid for arbitrary K,  p.  It can be shown that the symmetry relation of (5.33) actually 
is 

(5.39) C p ~ ( T  - 0 )  = ( - 1 ) ’ + ~ + ~ ’ ~  UlCpE (0 ) .  

Indeed, with this property, the wavefunctions of (5.30) are eigenfunctions of the parity 
operator (5.22) with the eigenvalue given by (5.18). 

If the potential energy depends on r only, the Hamiltonian fi, Dirac’s operator 
k and .f, possesss common eigenvectors; these have to have the form described in 
(5.30). In this case the radial wavefunctions have to fulfil a certain differential equation, 
which we will derive now. Inserting (5.30) into the eigenvalue equation 

fi* =E* (5.40) 
we get 

du/dr = -(K/r)u + ( 1  +E - V)u ,  (5.41) 

This is just the differential equation for the wavefunction in the space-independent 
standard representation of (5.23), 

du/dr = (1 - E  + V ) u  + (K/r)u. 

(5.42) 

Here we used the notation of Rose (1961). For bound states they have to be normalised 
according to 

l f fd r  ( u 2 + u 2 ) = 1 .  (5.43) 

So all results which have been obtained by studying the radial Dirac equation in the 
space-independent standard representation can be taken over to our case without any 
change. 

Conclusion 

In the preceding sections we presented a new approach to handle the Dirac equation 
in curvilinear coordinate systems. It is applicable to all coordinate systems which can 
be expressed in a specified sense by conformal mappings. Our method is based on a 
space-dependent transformation of the wavefunction, corresponding to a space-depen- 
dent set of Dirac matrices, a local representation. This transformation, which can be 
given in closed form, is chosen in such a way that the Dirac equation in the given 
coordinates assumes a very simple form. In particular, the derivative operators are 
just multiplied by the old, constant y-matrices; furthermore no undesirable additional 
potential terms arise. We proved the existence of such a transformation for all 
coordinate systems normally used in physics. It should be mentioned, however, that 
there may exist coordinates for which no such transformation can be constructed. For 
example, it is not evident whether the method is applicable for transformations 
involving all three components at once, since these cannot be described by a conformal 
mapping. Beside this, there are also rotational symmetric coordinates which cannot 
be described by a holomorphic function, for instance the coordinates introduced by 
the equipotential planes of the three-dimensional two-centre problem. In such cases 
it is not clear whether a local representation exists. 
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The local representation for a given coordinate system is particularly distinguished 
by simplifying the Hamiltonian fi greatly when expressed in terms of these coordinates. 
Furthermore, not only the Hamiltonian but also other operators normally appearing 
in connection with these coordinates (e.g. the angular momentum operators in spherical 
coordinates) show up in a very simple form, even simpler than in the usual Cartesian 
representation. In contrast to this, an operator generating a symmetry transformation 
not related to the coordinates (e.g. the linear momentum operators in spherical 
coordinates) will have a rather complicated structure. So it will be rather easy to find 
operators commuting with fi. Inversely, it is nearly trivial to disprove by induction 
the existence of an operator playing the role of K in the spherical case for a system 
exhibiting less symmetry like elliptical coordinates (6, q, cp). Here no operator of the 
form 

with the angular coordinates q and cp and arbitrary space-dependent 4 X 4 matrices 
A,, (at least one, AN, # 0) can exist which commutes with fi. 

A further advantage of the local representation becomes visible if we consider the 
Dirac equation as a partial differential equation which is to be treated numerically. 
Because of the simplicity of the differential equation the numerical expenditure is 
reduced greatly. It is not difficult to find the asymptotical behaviour of the wavefunc- 
tion near the boundaries of the domain of integration. As an application of the method 
developed here we will discuss the two-centre Dirac equation extensively in the 
following paper. There we will introduce a suitable coordinate system, establish the 
Dirac equation in the local representation and present the numerical method used to 
calculate energy eigenvalues and wavefunctions. Finally we want to mention that our 
transformation presumably can be generalised to linear wave equations describing 
fermions or bosons with spin larger than i. 
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Appendix 1. The connection between & and t,b 

In this appendix we want to prove the asserted connection between the two wavefunc- 
tions 4,  and $, cf (Al.1) below. The Dirac equation in any orthogonal coordinate 
system due to Fock (1929) is given by (4.31). It determines 4,. Alternatively $ fulfils 
(4.1). The proof will be given by induction. The proposition is certainly true for 
Cartesian coordinates. We assume that for some coordinate system { x }  

$r = eB$ (Al .1)  
is true and we have to prove that a similar relation holds if we introduce new 
coordinates, { x }  + { x ' } ,  cf (4.8), 

(A1.2) +: = eB'+' = eB e@*,,, 
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where $: and 4’ denote the wavefunctions in the new coordinates {XI}. We mention 
that the coordinate transformations are restricted by the conditions described in 0 4. 

The wavefunction 4: obeys 

(y’(s:-eA:)-m+i 1 = 1 i,j. k y‘[fb’ ;  log(hjh:h;lh;)])~b: = O .  (A1.3) 

For transformations involving only one variable the proposition is trivial. So we have 
to consider transformations induced by conformal mappings. Inserting (Al.2) we get 

( y ’ ( ~ L - e A ; ) - m  + i  I = 1 i.1. k y ’ [ b 1 f l 0 g i h ’ ~ h l / h l ) + b j B + b l p ] ) 4 ‘ = o .  (A1.4) 

The additional term becomes 

(A1.5) 

The first part vanishes because of the assumption. We are left with 

yid;[$ log(h’/h) + P I +  y ’ b , ! [ f  log(h ’ / h )  + P I  + ykDL[log(h’/h) + P I  = 0 (A1.6) 

which follows from (4.29). So (A1.4) becomes identical to (4.24). This completes the 
proof. 

Appendix 2. Solution of a differential equation 

The task of this appendix is the solution of the differential equation (5.31). As already 
mentioned in § 5 it suffices to solve it for K > O ,  p > O .  Since it is a system of two 
first-order equations, there are two linearly independent solutions. An examination 
of the asymptotic behaviour for 6 -P 0, where the differential equation is singular, 
shows that one solution is proportional to while any linearly independent solution 
diverges as e-” (ErdClyi 1956). Such a solution will not be normalisable, cf (5.37), 
since p 3 f. Hence there is at most one physical meaningful solution. The ansatz 

(A2.1) 

where we substituted 

x = cos e. 
Eliminating f 2 ,  this becomes 

(A2.3) 

(1 - x 2 )  d2fl/dX2 + [-1- (2p +2)x] dfl/dx + [ K ~  - (p  + f ) 2 1 f ,  = 0. (A2.4) 

This is just Jacobi’s differential equation. It possesses as solutions Jacobi polynomials 
(Erdelyi et a1 1953) 

( x  1 (A2.5) f l ( x )  = c1p(/+l/2.w-1/2) 
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with the abbreviation introduced in (5.35). The condition that fl(x) is a polynomial 
is equivalent to the condition that K is an integer not less than k +;. The easiest way 
to determine f 2  is to observe (5.33) and use the symmetry property of the Jacobi 
polynomials (Abramowitz and Stegun 1965), 

pjP& ( -x)  = ( - l ) ” P j p ’ “ ’ ( X ) .  (A2.6) 

From this it follows that 

(X 1. (LI -1 / 2 4  +1/2)  
f 2 ( x )  = czpn (A2.7) 

If n were not a non-negative integer, the solutions f l  and f2 could still be expressed 
by hypergeometric functions. However, this would lead to non-normalisable solutions 
diverging for 8 -* 7r. This fact gives the quantisation condition of K mentioned above. 

c 2  = c 1 ,  (A2.8) 

The constant c 2  can be found by specifying (A2.2) to x = +1 

where we used 

Therefore the unnormalised solution is 

(A2.10) 

Using the orthogonality relation of the Jacobi polynomials, it is not difficult to show 
that (c l (  is given by the expression (5.36). 

Finally we give a short list of Jacobi polynomials, occurring for K = 1 , 2 , 3  and 
k = i, i, i: 

1 3 5  

pC1.0’ - 1 
1 -2(3X+1), p$o, - -Po (2,1) = pb3.2’ = 1, 

(A2.11) 
P:’*” = i ( 5 x  + l), Ph’so’ = i ( 5 x 2  + 2x - 1). 

follow directly from (A.2.6). (LI-l/2++1/21 The polynomials of the form P, 
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